
Blood products are not used to treat diseases

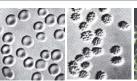
Supportive therapies

Blood components

- Whole blood
 - Packed red blood cells
 - Fresh frozen plasma
 - Cryoprecipitate
 - Cryo-poor plasma
 - Platelet-rich plasma

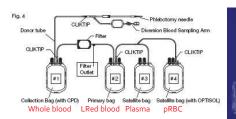
Blood donor selection

- History taking
- Blood examinations
- Blood type
 - Dog:
 - DEA 1.1, 1.2, 1.3, 3, 4, 5, 6, 7, 8 etc...
 - Cat:
 - A, B, AB
- Pathogen screening
 - Dog:
 - Babesiosis, Ehrlichiosis, HWD, Hemotropic mycoplasmosis
 - Cats:
 - FeLV, FIV, Hemotropic mycoplasmosis

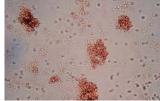


Pretransfusion compatibility test

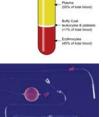
- Cross-match
 - Major
 - Minor



Packed red blood cells


Collection of blood

• Fresh frozen plasma



Collection of blood

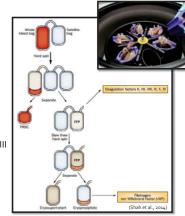
- Whole blood
 - Packed red blood cells
 - Fresh frozen plasma

Collection of blood

- Whole blood
 - 0.14 ml CPDA-1/1 ml blood
 - 20 ml/kg of whole blood increases patients' PCV by 8~10%
 - Sedation (if necessary)
 - Dogs: butorphanol, Zoletil
 - · Cats: ketamine+diazepam, Zoletil
 - Hair clipping
 - Gravity or suction

Collection of blood--Dog

Collection of blood--Cat



Blood components

- Whole blood
 - Packed red blood cells
 - 2000rpm, 5-10 mins
 - Fresh frozen plasma
 - 250orpm, 30mins
 - Cryoprecipitate
 - Thawing FFP at o-6[°]C
 - Von Willebrand's factor, fibrinogen, factors XIII & VIII
 - Cryo-poor plasma
 - Factors II, VII, IX, X
 - Platelet-rich plasma

Administration of blood products

- Before transfusion.....
 - Corticosteroid, diphenhydramine.....?
- Transfusion rate (increased gradually)
 - 15 drops/ml
 - 240/ideal rate= Sec/drop
 - Ex. Ideal rate 20ml/hr→ 240/20=12 sec/drop
 - 20 drops/ml
 - 18o/ideal rate = Sec/drop
- Monitoring during transfusion
 - BT/HR/RR/BP

體重 (kg)	每日總熱量(Kcal)或水量(ml)	速率(ml/hr)	
1	132	6	
2	214	9	
3	285	12	
4	348	15	
5	407	17	
6	463	19	
7	515	21	
8	566	24	
9	615	26	
10	662	28	
11	707	29	
12	752	31	
13	795	33	
14	837	35	
15	879	37	
16	919	38	
17	959	40	
18	998	42	
19	1037	43	
20	1075	45	
21	1112	46	
22	1149	48	
23	1185	49	
24	1221	51	
25	1256	52	
26	1291	54	
27	1326	55	
28	1360	57	
29	1394	58	
30	1427	59	
35	1590	66	
40	1746	73	
45	1896	79	
50	2041	85	
55	2182	91	
60	2319	97	

體重 (kg)	每日總熱量(Kcal)或水量(ml)	速率(ml/hr)	
1	80	80	
1.5	108	72	
2	135	67	
2.5	159	64	
3	182	61	
3.5	205	58	
4	226	57	
4.5	247	55	
5	268	53	

Adverse effects of transfusion

- Acute immunologic
 - Acute hemolytic reaction
 - Blood type
 - Nonhemolytic fever and urticaria
- Acute nonimmunologic
 - Collecting, storage
- Delayed immunologic
 - Purpura
- Delayed nonimmunologic
 - Infectious

Adverse effects of transfusion

- Packed red blood cells
 - Storage-related changes
 - Metabolic effects
 - Shape changes
 - Microparticles
 - Oxidative injury
 - Nitric Oxide

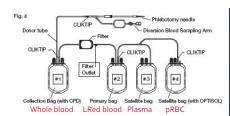
Storage-related changes in pRBC

- Metabolic effects
 - Slowed glycolysis
 - Proton accumulation
 - 1-6°C
 - Hyperkalemia
 - Arrhythmias and fatal cardiac arrest in human pediatric patients

Storage-related changes in pRBC

- Shape changes
 - From biconcave disk to echinocytes and eventually spheroechinocytes
 - Critical in maintain adequate tissue oxygenation

Age of Blood


Storage-related changes in pRBC

- Microparticles (MPs)
 - In both healthy and diseased individuals
 - Submicron (<1um) membrane-derived exocytic vesicles
 - · Erythrocytes, leukocytes, platelets, endothelial cells etc.

 - Cell surface proteins
 - Cytoplasmic contents
 - Nuclear components
 - Has proven detrimental for blood transfusion recipients
 - Systemic inflammation
 - Cardiovascular
 - Hematologic
 - Oncologic
 - Transfusion-associated acute lung injury
 - Thrombotic complications
 - Ischemic brain injury

Storage-related changes in pRBC

- Microparticles (MPs)
 - Leukoreduction (LR)
 - Eliminate leukocytes and platelets

Storage-related changes in pRBC

- Oxidative injury
 - Superoxide radical and ferric methemoglobin
 - Membrane damage and cell lysis of RBCs
 - Increase over a 28 day storage period
- Nitric Oxide (NO)
 - Vasodilation
 - Improve capillary blood flow
 - Free hemoglobin and MPs
 - 1000 times faster than intact erythrocytes

VoxSanguinis

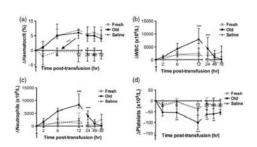
ORIGINAL PAPER

Transfusion of 28-day-old leucoreduced or non-leucoreduced stored red blood cells induces an inflammatory response in healthy dogs

M. B. Callan, R. T. Patel, A. H. Rux, S. Bandyopadhyay, A. N. Sireci, P. A. ODonnell, T. Ruane, T. Sikora, L. Sikora, L. Sikora, L. Sikora, L. Sikora, A. N. Sireci, P. A. ODonnell, T. Ruane, T. Sikora, L. Siko

K. Marryott. B. S. Sachais & E. A. Hod
Departments of Clinical Studies, School of Veterinary Medicine, University of Pennsy

Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA


ent of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons - New York Presbyterian Hospital, New York

Results & Discussions

	Non-CR units				Ch units			
	Fresh		Old		Fresh		Old	
	Day 0	Day 7	Day 0	Day 28	Day 0	Day 7	Day 0	Day 28
free Hb (mg/d) Hacmolysis rate (%) MCP-1 (pg/ml) IL-6 (pg/ml) IL-8 (pg/ml)	39 2 ± 11-6 0-12 ± 0-03 20 4 ± 6-5 102-3 ± 245-6 1034-5 ± 845-6 ¹¹	127.5 ± 32.9" 0.29 ± 0.05" 30.6 ± 11.9 65.2 ± 129.8 1103.2 ± 1356-1	479 ± 25-4 0-13 ± 0-04 23-1 ± 12-9 80-0 ± 171-1 1268-4 ± 819-8 ¹²	242-4 ± 80-7************************************	61-2 ± 37-9 0.15 ± 0.06 20.8 ± 8.4 21-7 ± 31-5 25-2 ± 39-2	187-3 ± 51-0" 0-41 ± 0-11" 23-1 ± 88 14-9 ± 22-1 27-3 ± 40-0	52-1 ± 22 0-16 ± 0-06 19-8 ± 11-8 84-0 ± 173-1 54-8 ± 20-1	302-3 ± 95-6***,**** 0-62 ± 0-11****,*** 32-1 ± 11-8 71-5 ± 131-1 54-9 ± 63-6

Results & Discussions

neutrophilia and decreased platelet counts. Data are median ± interquartile range for increases in (a) haematocrit, (b) WBC count, (c) neutrophil count and (d) platelet count from baseline levels up to 72 h after fresh (grey circles; n=20) or old (black squares; n=20) RBC transfusions or saline infusions (dotted line; n=8). * $^{*}P < 0.01$, * $^{*}P < 0.001$ comparing only the fresh and old RBC

LR did not affect the responses of leukocytosis, increased neutrophils, and decreased platelet counts No differences between LR and non-LR groups were observed on complete blood cell counts in vivo

Conslusions

- Old RBC transfusions induce an MCP-1 response, accompanied by increased neutrophils and decreased platelets
- Both fresh and old stored blood induce extravascular hemolysis

Figure 1 Two physicians transfusing blood from a dog into a man. Reproduced with permission from Bibliothèque Interuniversitaire de Médecine, Paris, Scultetus J, 1671

Review

ifms

Xenotransfusion with canine blood in the feline species: review of the literature

Journal of Feline Medicine and Surgery 15(2) 62-67 © ISFM and AAFP 2012 Reprints and permission: sagepub co. u/djournalsFermissions.nav DOI: 10.1177/1098612X12460530 [ms.com

Xenotransfusion with canine blood in the feline species: review of the literature

Journal of Feline Medicine and Surger 15(2) 62-67 0 ISFM and AAFP 2012 Reprints and permissions as asgepub. ox ulifournalsPermissions ru DD: 10.1177/1098612X12460530 jms.com

Catherine Bovens and Tim Gruffydd-Jones

First study (1962)

Forth study (1969)

Second study (1963)

Fifth study (2004)

Third study (1968)

Catherine Bovens and Tim Gruffydd-Jones

First study (1962)

Forth study (1969)

Second study (1963)

Fifth study (2004)

Third study (1968)

7 cats

Review

Journal of Feline Medicine and Surgery 15(2) 62-67 © ISFM and AAFP 2012 Reprints and permission: sagepub. co.ul/pournalsPermissions.nav DOI: 10.1177/1098612X12460530

SSAGE

Catherine Bovens and Tim Gruffydd-Jones

Xenotransfusion with canine

blood in the feline species:

review of the literature

First study (1962)

Forth study (1969)

Second study (1963)

Third study (1968)

Fifth study (2004)

Second study (1963)

11 ml/kg (Cr⁵¹)
Lifespan 3.6 days (longest 5.4 day)

4 cats
Autoagglutination(+) & in vitro hemolysis (+): 6-7 days

2nd transfusion:
1 cat in 4 days, 2 cats in 1 and 2 days (survive)
1 cat in 7 days (died)

8 cats
Autoagglutination (+): 6 days
2nd transfusion:
< 6 days: survive
> 7 days: died

Review

Xenotransfusion with canine blood in the feline species: review of the literature

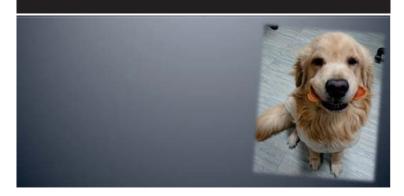
Journal of Feline Medicine and Surgery 15(2) 62-67 © ISFM and AAFP 2012 Reprints and permission: sagepub co.uk/journalsPermissions.nav DOI: 10.1177/1098612X12460530 ilms.com

SSAGE

Catherine Bovens and Tim Gruffydd-Jones

First study (1962)

Forth study (1969)


Second study (1963)

Fifth study (2004)

Third study (1968)

Case report

Questions!?

