Blood products are not used to treat diseases

Supportive therapies

Blood components

- Whole blood
 - Packed red blood cells
 - Fresh frozen plasma
- Cryoprecipitate
- Cryo-poor plasma
- Platelet-rich plasma

Blood donor selection

- History taking
- Blood examinations
- Blood type
 - Dog:
 - DEA 1.1, 1.2, 1.3, 3, 4, 5, 6, 7, 8 etc...
 - Cat:
 - A, B, AB
- Pathogen screening
 - Dog:
 - babesiosis, Ehrlichiosis, HWD, Hemotropic mycoplasmosis
 - Cats:
 - FeLV, FIV, Hemotropic mycoplasmosis

Pretransfusion compatibility test

- Cross-match
 - Major
 - Minor

Collection of blood

- Whole blood
 - Packed red blood cells
 - Fresh frozen plasma
Collection of blood

- Whole blood
 - Packed red blood cells
 - Fresh frozen plasma

- 0.14 ml CPDA-1/1 ml blood
- 20 ml/kg of whole blood increases patients’ PCV by 8–10%
- Sedation (if necessary)
 - Dogs: butorphanol, Zoletil
 - Cats: ketamine+diazepam, Zoletil
- Hair clipping
- Gravity or suction

Collection of blood--Dog

Collection of blood--Cat

Blood components

- Whole blood
 - Packed red blood cells
 - 2000rpm, 5-10 mins
 - Fresh frozen plasma
 - 2500rpm, 30 mins
 - Cryoprecipitate
 - Thawing FFP at 0-6°C
 - Von Willebrand’s factor, fibrinogen, factors XII & VIII
 - Cryo-poor plasma
 - Factors II, VII, IX, X
 - Platelet-rich plasma

Administration of blood products

- Before transfusion.....
 - Corticosteroid, diphenhydramine.....?
- Transfusion rate (increased gradually)
 - 15 drops/ml
 - 240/ideal rate = Sec/drop
 - Ex. Ideal rate 20ml/hr → 240/20=12 sec/drop
 - 20 drops/ml
 - 180/ideal rate = Sec/drop
- Monitoring during transfusion
 - BT/HR/RR/BP

Monitoring during transfusion

Monitoring during transfusion
Adverse effects of transfusion

- Acute immunologic
 - Acute hemolytic reaction
 - Blood type
 - Nonhemolytic fever and urticaria
- Acute nonimmunologic
 - Collecting, storage
 - Delayed immunologic
 - Purpura
 - Delayed nonimmunologic
 - Infectious

Storage-related changes in pRBC

- Packed red blood cells
 - Storage-related changes
 - Metabolic effects
 - Shape changes
 - Microparticles
 - Oxidative injury
 - Nitric Oxide

- Metabolic effects
 - Slowed glycolysis
 - Proton accumulation
 - 1-6°C
 - Hyperkalemia
 - Arrhythmias and fatal cardiac arrest in human pediatric patients

- Shape changes
 - From biconcave disk to echinocytes and eventually spheroechinocytes
 - Critical in maintain adequate tissue oxygenation

- Microparticles (MPs)
 - In both healthy and diseased individuals
 - Submicron (<1μm) membrane-derived exocytic vesicles
 - Erythrocytes, leukocytes, platelets, endothelial cells etc.
 - Antigen
 - Cell surface proteins
 - Cytoplasmic contents
 - Nuclear components
 - Has proven detrimental for blood transfusion recipients
 - Systemic inflammation
 - Cardiovascular
 - Hematologic
 - Oncologic
 - Transfusion-associated acute lung injury
 - Thrombotic complications
 - Ischemic brain injury
- Microparticles (MPs)
 - Leukoreduction (LR)
 - Eliminate leukocytes and platelets

- Oxidative injury
 - Superoxide radical and ferric methemoglobin
 - Membrane damage and cell lysis of RBCs
 - Increase over a 28 day storage period

- Nitric Oxide (NO)
 - Vasodilation
 - Improve capillary blood flow
 - Free hemoglobin and MPs
 - 1000 times faster than intact erythrocytes

Vox Sanguinis

Original Paper

Transfusion of 28-day-old leucoreduced or non-leucoreduced stored red blood cells induces an inflammatory response in healthy dogs

- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Results & Discussions

No differences between LR and non-LR groups were observed in complete blood cell counts **in vivo**

LR did not affect the responses of leukocytosis, increased neutrophils, and decreased platelet counts

Old RBC transfusions induce an MCP-1 response, accompanied by increased neutrophils and decreased platelets

Both fresh and old stored blood induce extravascular hemolysis
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>1962</td>
<td>7 cats</td>
</tr>
<tr>
<td>Second</td>
<td>1963</td>
<td>11 ml/kg (Cr11), Lifespan 3.6 days (longest 5.4 day)</td>
</tr>
<tr>
<td>Third</td>
<td>1968</td>
<td></td>
</tr>
<tr>
<td>Fourth</td>
<td>1969</td>
<td></td>
</tr>
<tr>
<td>Second</td>
<td>1963</td>
<td>Autoagglutination (+), in vitro hemolysis (+): 6-7 days</td>
</tr>
<tr>
<td>Third</td>
<td>1968</td>
<td>2nd transfusion: 1 cat in 4 days, 2 cats in 1 and 2 days (survive)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth</td>
<td>1969</td>
<td>8 cats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autoagglutination (+): 6 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2nd transfusion: < 6 days: survive, > 7 days: died</td>
</tr>
</tbody>
</table>
Xenotransfusion with canine blood in the feline species: review of the literature

Catherine Bovens and Tim Gruffydd-Jones

First study (1962)
Second study (1963)
Third study (1968)
Forth study (1969)
Fifth study (2004)
Case report

Questions!?